25 research outputs found

    Cosmic Origins Program Annual Technology Report

    Get PDF
    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present

    Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae

    Get PDF
    We report the serendipitous detection by GALEX of fast (1 mag) UV emission from two Type II plateau (II-P) supernovae (SNe) at z=0.185 and 0.324 discovered by the Supernova Legacy Survey. Optical photometry and VLT spectroscopy 2 weeks after the GALEX detections link the onset of UV emission to the time of shock breakout. Using radiation hydrodynamics and non-LTE radiative transfer simulations, and starting from a standard red supergiant (RSG; Type II-P SN progenitor) star evolved self-consistently from the main sequence to iron core collapse, we model the shock breakout phase and the 55 hr that follow. The small scale height of our RSG atmosphere model suggests that the breakout signature is a thermal soft X-ray burst (lambda_peak ~ 90\AA) with a duration of <~ 2000 s. Longer durations are possible but require either an extended and tenuous non-standard envelope, or an unusually dense RSG wind with \dot{M} ~ 10^(-3) Msun yr^(-1). The GALEX observations miss the peak of the luminous (M_FUV ~ -20) UV burst but unambiguously capture the rise of the emission and a subsequent 2 day long plateau. The postbreakout, UV-bright plateau is a prediction of our model in which the shift of the peak of the spectral energy distribution (SED) from ~100 to ~1000\AA and the ejecta expansion both counteract the decrease in bolometric luminosity from ~10^11 to ~10^9 L_sun over that period. Based on the observed detection efficiency of our study we make predictions for the breakout detection rate of the GALEX Time Domain Survey.Comment: 4 pages, 3 color figures, accepted to ApJ Letters, emulateapj, corrections from proofs adde

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole

    Get PDF
    To appear in Dec. 10, 2006 issue of ApJ LettersInternational audienceA supermassive black hole in the nucleus of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces and a flare of radiation is emitted by the stream of stellar debris that plunges into the black hole. Since common active galactic nuclei have accreting black holes that can also produce flares, a convincing demonstration that a stellar tidal disruption has occurred generally begins with a ``normal'' galaxy that has no evidence of prior nuclear activity. Here we report a luminous UV flare from an elliptical galaxy at z = 0.37 in the Groth field of the GALEX Deep Imaging Survey that has no evidence of a Seyfert nucleus from optical spectroscopy and X-ray imaging obtained during the flare. Multiwavelength data collected at the time of the event, and for 2 years following, allow us to constrain, for the first time, the spectral energy distribution of a candidate tidal disruption flare from optical through X-rays. The luminosity and temperature of the radiation and the decay curve of the flare are in excellent agreement with theoretical predictions for the tidal disruption of a star, and provide the strongest empirical evidence for a stellar disruption event to date

    Ultraviolet, Optical, and Infrared Constraints on Models of Stellar Populations and Dust Attenuation

    Get PDF
    16 pages, 11 figures, 2 tables. Appearing in the GALEX special issue of ApJ Supp. (29 papers)The color of galaxies is a fundamental property, easily measured, that constrains models of galaxies and their evolution. Dust attenuation and star formation history (SFH) are the dominant factors affecting the color of galaxies. Here we explore the empirical relation between SFH, attenuation, and color for a wide range of galaxies, including early types. These galaxies have been observed by GALEX, SDSS, and Spitzer, allowing the construction of measures of dust attenuation from the ratio of infrared (IR) to ultraviolet (UV) flux and measures of SFH from the strength of the 4000A break. The empirical relation between these three quantities is compared to models that separately predict the effects of dust and SFH on color. This comparison demonstrates the quantitative consistency of these simple models with the data and hints at the power of multiwavelength data for constraining these models. The UV color is a strong constraint; we find that a Milky Way extinction curve is disfavored, and that the UV emission of galaxies with large 4000A break strengths is likely to arise from evolved populations. We perform fits to the relation between SFH, attenuation, and color. This relation links the production of starlight and its absorption by dust to the subsequent reemission of the absorbed light in the IR. Galaxy models that self-consistently treat dust absorption and emission as well as stellar populations will need to reproduce these fitted relations in the low-redshift universe

    Classification and Characterization of Objects from the Galaxy Evolution Explorer Survey and the Sloan Digital Sky Survey

    No full text
    We use the Galaxy Evolution Explorer (GALEX) Medium Imaging Survey (MIS) and All-sky Imaging Survey (AIS) data available in the first internal release, matched to the Sloan Digital Sky Survey (SDSS) catalogs in the overlapping regions, to classify objects by comparing the multiband photometry to model colors. We show an example of the advantage of such broad wavelength coverage (GALEX far-UV and near-UV, SDSS ugriz) in classifying objects and augmenting the existing samples and catalogs. From the MIS (AIS) sample over an area of 75 (92) deg2, we select a total of 1736 (222) QSO candidates at redshifts less than 2, significantly extending the number of fainter candidates and moderately increasing the number of bright objects in the SDSS list of spectroscopically confirmed QSOs. Numerous hot stellar objects are also revealed by the UV colors, as expected

    The Properties of Ultraviolet-Luminous Galaxies at the Current Epoch

    No full text
    We have used the first matched set of GALEX and SDSS data to investigate the properties of a sample of 74 nearby galaxies with far-ultraviolet luminosities chosen to overlap the luminosity range of typical high-z Lyman Break Galaxies (LBGs). GALEX deep surveys have shown that ultraviolet-luminous galaxies (UVLGs) similar to these are the fastest evolving component of the UV galaxy population. Model fits to the combined GALEX and SDSS photometry yield typical FUV extinctions similar to LBGs. The implied star formation rates are SFR ~ 3 to 30 solar mass per year. This overlaps the range of SFRs for LBGs. We find a strong inverse correlation between galaxy mass and far-ultraviolet surface brightness, and on this basis divide the sample into ``large\'\' and ``compact\'\' UVLGs. The compact UVLGs have half-light radii of a few kpc or less (similar to LBGs). They are relatively low mass galaxies (~10 billion solar masses) with typical velocity dispersions of 60 to 150 km/s. They span a range in metallicity from 0.3 to 1 times solar, have blue optical-UV colors, and are forming stars at a rate sufficient to build the present galaxy in ~a Gigayear. In all these respects they appear similar to the LBG population. These ``living fossils\'\' may therefore provide an opportunity for detailed investigation of the physical processes occurring in typical star forming galaxies in the early universe

    GALEX Ultraviolet Photometry of Globular Clusters in M31: Three Year Results and a Catalog

    No full text
    We present ultraviolet (UV) photometry of M31 globular clusters (GCs) found in 23 Galaxy Evolution Explorer (GALEX) images covering the entirety of M31. We detect 485 and 273 GCs (and GC candidates) in the near-ultraviolet (NUV; λeff = 2267 ˚A, ∆λ = 732 ˚A) and far-ultraviolet (FUV; λeff = 1516 ˚A, ∆λ = 268 ˚A), respectively. Our UV catalog has been complemented with existing optical and near-infrared photometry. The UV properties of GCs have

    The GALEX Ultraviolet Atlas of Nearby Galaxies

    No full text
    181 pages, 10 figures, accepted for publication in ApJS (abstract abridged)We present images, integrated photometry, surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the GALEX satellite in its far-ultraviolet (FUV; 1516A) and near-ultraviolet (NUV; 2267A) bands. (...) This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different sub-types. Elliptical galaxies with brighter K-band luminosities (i.e. more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated web page at http://nedwww.ipac.caltech.edu/level5/GALEX_Atlas

    GALEX Observations of an Energetic Ultraviolet Flare on the dM4e Star GJ 3685A

    No full text
    The Galaxy Evolution Explorer (GALEX) satellite has obtained high time resolution ultraviolet photometry during a large flare on the M4 dwarf star GJ 3685A. Simultaneous NUV (1750 - 2800A) and FUV (1350 - 1750A) time-tagged photometry with time resolution better than 0.1 s shows that the overall brightness in the FUV band increased by a factor of 1000 in 200 s. Under the assumption that the NUV emission is mostly due to a stellar continuum, and that the FUV flux is shared equally between emission lines and continuum, then there is evidence for two distinct flare components for this event. The first flare type is characterized by an exponential increase in flux with little or no increase in temperature. The other involves rapid increases in both temperature and flux. While the decay time for the first flare component may be several hours, the second flare event decayed over less than 1 minute, suggesting that there was little or no confinement of the heated plasma
    corecore